4.6 Article

Genetic Disruption of KEAP1/CUL3 E3 Ubiquitin Ligase Complex Components is a Key Mechanism of NF-KappaB Pathway Activation in Lung Cancer

Journal

JOURNAL OF THORACIC ONCOLOGY
Volume 6, Issue 9, Pages 1521-1529

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/JTO.0b013e3182289479

Keywords

KEAP1; CUL3; RBX1; IKBKB; NF-kappa B signaling; Genetic disruption

Funding

  1. Canadian Institutes for Health Research (CIHR) [MOP 86731, MOP 94867]
  2. Canadian Cancer Society [CCS20485, CCS20527]
  3. NCI Early Detection Research Network (EDRN) [5U01, CA84971-10]
  4. Canary Foundation
  5. Michael Smith Foundation for Health Research
  6. Vanier Canada Graduate Scholarship
  7. University of British Columbia Interdisciplinary Oncology Program

Ask authors/readers for more resources

Introduction: Inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase beta (IKBKB) (IKK-beta/IKK-2), which activates NF-kappa B, is a substrate of the KEAP1-CUL3-RBX1 E3-ubiquitin ligase complex, implicating this complex in NF-kappa B pathway regulation. We investigated complex component gene disruption as a novel genetic mechanism of NF-kappa B activation in non-small cell lung cancer. Methods: A total of 644 tumor-and 90 cell-line genomes were analyzed for gene dosage status of the individual complex components and IKBKB. Gene expression of these genes and NF-kappa B target genes were analyzed in 48 tumors. IKBKB protein levels were assessed in tumors with and without complex or IKBKB genetic disruption. Complex component knockdown was performed to assess effects of the E3-ligase complex on IKBKB and NF-kappa B levels, and phenotypic importance of IKBKB expression was measured by pharmacological inhibition. Results: We observed strikingly frequent genetic disruption (42%) and aberrant expression (63%) of the E3-ligase complex and IKBKB in the samples examined. Although both adenocarcinomas and squamous cell carcinomas showed complex disruption, the patterns of gene disruption differed. IKBKB levels were elevated with complex disruption, knockdown of complex components increased activated forms of IKBKB and NF-kappa B proteins, and IKBKB inhibition detriments cell viability, highlighting the biological significance of complex disruption. NF-kappa B target genes were overex-pressed in samples with complex disruption, further demonstrating the effect of complex disruption on NF-kappa B activity. Conclusions: Gene dosage alteration is a prominent mechanism that disrupts each component of the KEAP1-CUL3-RBX1 complex and its NF-kappa B stimulating substrate, IKBKB. Herein, we show that, multiple component disruption of this complex represents a novel mechanism of NF-kappa B activation in non-small cell lung cancer.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available