4.5 Article

Effect of particle size of fly ash cenospheres on the properties of acrylonitrile butadiene styrene-filled composites

Journal

JOURNAL OF THERMOPLASTIC COMPOSITE MATERIALS
Volume 27, Issue 2, Pages 251-267

Publisher

SAGE PUBLICATIONS LTD
DOI: 10.1177/0892705712443253

Keywords

Acrylonitrile butadiene styrene (ABS); fly ash cenospheres; mechanical properties; thermal properties; electrical properties; microstructure

Ask authors/readers for more resources

Fly ash cenospheres are inexpensive, readily available from coal burning or heavy oil combustion, not an eco-friendly material. If ways can be found to use this, it will serve the twin purposes of facilitating applications for the ash bearing materials and at the same time reduce pollution. One way to achieve this task is to make ash-bearing composites having polymer matrices. The performance of filled polymers is generally determined on the basis of the interface attraction of filler and polymers. Fillers of widely varying particle size and surface characteristics are responsive to the interfacial interactions with the polymers. The present study deals with the effect of particle size (150 mesh, 100 mesh, and 300 mesh) variations in fly ash cenospheres, as a filler with different concentrations (0-40wt%), on various properties of acrylonitrile butadiene styrene. The mechanical, thermal, and electrical properties of the composite material were evaluated, and the microstructure was investigated through scanning electron microscopy. The smaller particle size showed better properties in comparison with larger particle size. As increasing filler loading, the saturation level is influenced by the agglomeration of filler particles in the polymer matrix. Thus, the performance of polymer filled with fly ash cenosphere composites is the function of the particle size, the dispersion, and the interfacial interaction between the filler particles and the polymer matrix.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available