4.5 Article

Thermomechanical, barrier, and morphological properties of chitosan-reinforced starch-based biodegradable composite films

Journal

JOURNAL OF THERMOPLASTIC COMPOSITE MATERIALS
Volume 27, Issue 7, Pages 933-948

Publisher

SAGE PUBLICATIONS LTD
DOI: 10.1177/0892705712461512

Keywords

Chitosan; starch; composite; biodegradable; mechanical properties

Ask authors/readers for more resources

Chitosan-reinforced starch-based biodegradable composite films were prepared by solution casting. The chitosan content in the films was varied from 20% to 80% (w/w). Tensile strength (TS) and tensile modulus (TM) of the starch-based composites were improved significantly with the addition of chitosan. Water vapor permeability (WVP) and oxygen transmission rate (OTR) of chitosan-reinforced starch-based films showed a significant reduction compared to native chitosan film and indicated better barrier properties to water vapor and oxygen. The water uptake of the films pointed out better hydrophobic character due to the incorporation of chitosan in starch-based films. Thermal stability was also found to increase with the addition of chitosan in starch-based films and was confirmed by thermogravimetric analysis (TGA) and differential thermal analysis (DTA). Fourier transform infrared (FT-IR) spectroscopy supported the molecular interactions due to the reinforcement of chitosan in starch-based films. Surface and interface morphologies of chitosan film and starch/chitosan composite film were examined by scanning electron microscope (SEM) and suggested sufficient homogenization of starch and chitosan in the biodegradable composite films.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available