4.3 Article

Wall Stretching in Magnetohydrodynamics Rotating Flows in Inertial and Rotating Frames

Journal

JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER
Volume 25, Issue 4, Pages 606-613

Publisher

AMER INST AERONAUT ASTRONAUT
DOI: 10.2514/1.T3750

Keywords

-

Ask authors/readers for more resources

The steady magnetohydrodynamic laminar flow of an electrically conducting fluid on a radially stretchable rotating disk in the presence of a uniform vertical magnetic field is the subject of the present paper. The problem is an extension of the well-known von Karman viscous pump problem to the configuration with a stretchable rotating disk placed in inertial and/or noninertial frames (where a Bodewadt-Hartmann layer forms). The governing equations of motion are reduced to a set of nonlinear differential equations by means of conventional similarity transformations. An energy equation accounts for the viscous dissipation and joule heating terms. Employing a highly accurate spectral numerical integration scheme, the effects of a parameter based on wall stretching are examined in both frames. The quantities of particular physical interest, such as the torque, the wall shear stresses, the vertical suction velocity, and the rate of heat transfer, are calculated and discussed. It is found that the influence of the frame diminishes in the large limit of disk stretching.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available