4.3 Article Proceedings Paper

Encapsulated Phase Change Material Slurry Flow in Manifold Microchannels

Journal

JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER
Volume 24, Issue 2, Pages 364-373

Publisher

AMER INST AERONAUT ASTRONAUT
DOI: 10.2514/1.44276

Keywords

-

Ask authors/readers for more resources

The heat transfer performance of water-based microencapsulated phase change material slurry (particle size 5 mu m) flow inside manifold microchannels of hydraulic diameter 170 mu m was experimentally and numerically investigated. Slurry performance was poorer compared with pure fluid due to the large size of particles used and lower thermal conductivity of slurry compared with water. A parametric study was performed with nanoencapsulated phase change material slurry flow (particle size of 100 nm) in microchannels of hydraulic diameters 170 and 47 mu m. Two different base fluids were considered and the heat transfer enhancement of slurry with various particle mass concentrations compared with its base fluid was presented. For developing flows, the performance of phase change material slurry depends on various parameters such as base-fluid thermal conductivity, channel dimensions, amount of phase change material melted, and particle mass concentration. In the case of manifold microchannel heat sinks, where the microchannel flowpath is much shorter compared with traditional microchannels, using higher-thermal-conductivity phase change material, narrower channels, smaller particles, and optimum parameters will aid in obtaining better thermal performance of phase change material slurry compared with pure fluid.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available