4.7 Article

Influence of surface-modified montmorillonites on properties of silicone rubber-based ceramizable composites

Journal

JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY
Volume 119, Issue 1, Pages 111-121

Publisher

SPRINGER
DOI: 10.1007/s10973-014-4156-x

Keywords

Polymer composites; Ceramization; Ceramification; Thermal properties; Organophilized; montmorillonites

Funding

  1. EU Integrity Fund [POIG 01.03.01-00-067/08-00]

Ask authors/readers for more resources

Ceramizable (ceramifiable) silicone rubber-based composites are modern elastomeric materials for fire protection application. The most important sector of economy using such materials is cable industry because there are special types of electric circuits that have to keep working in the case of fire. These kinds of composites can create ceramic phase protecting copper wire from melting under high temperature. When temperature increases, polymer matrix degrades (creating silica residue as one of the products) and mineral particles dispersed in silicone rubber matrix stick together creating stiff, durable, insulating and porous ceramic skin. In this paper, the influence of surface modification of montmorillonite with quaternary ammonium salts on ceramization of their silicone rubber composites is presented. Filler modification was studied, determining changes to its surface energy and thermal stability. Mechanical properties, flammability and thermal stability of composites were determined. Ceramization of the composites was discussed from the point of view of their mechanical properties and structure of ceramic phase after heat treatment, determined by compression stress tests, porosimetry and scanning electron microscopy adequately. Results show that type of modifier applied strongly affects properties of silicone rubber-based ceramizable composites before and after ceramization. Samples containing surface-modified montmorillonite produce significantly less heat during their thermal decomposition than composite filled with unmodified montmorillonite. Moreover, incorporation of montmorillonite modified with ammonium salt of linear organic chain causes the creation of nano-porous structure after ceramization. On the one hand, it facilitates heat insulation, but on the other hand, high total volume of pores adversely affects mechanical endurance of the ceramic phase.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available