4.7 Article

Thermal analysis and crystallinity study of cellulose nanofibril-filled polypropylene composites

Journal

JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY
Volume 113, Issue 2, Pages 673-682

Publisher

SPRINGER
DOI: 10.1007/s10973-012-2770-z

Keywords

Isothermal; Cellulose nanofiber; Microfibrillated cellulose; Microcrystalline cellulose; Thermogravimetric analysis; X-ray diffraction

Funding

  1. National Science Foundation [EPS-05-54545]
  2. US Army [W912HZ-07-2-0013]

Ask authors/readers for more resources

The isothermal and non-isothermal decompositions of cellulose nanofiber (CNF) and microfibrillated cellulose (MFC)-filled polypropylene (PP) composites were evaluated and compared with microcrystalline cellulose (MCC)-filled composites by means of thermogravimetric analysis (TG). X-ray diffraction was employed to evaluate crystallinity of the composites. The degree of maximum thermal degradation (ultimate DTG peak value) increased and thermal degradation onset temperature decreased as the cellulose content increased because the thermal stability of cellulose fillers is lower than that of neat PP, but the thermal degradation of the composite was hindered at higher temperature conditions because of the increased residual mass content of the cellulose nanofibril fillers compared to the matrix polymer. The isothermal residual mass of the cellulose nanofibril-filled PP composites under melt blending and injection molding temperatures was decreased marginally by incorporation of the cellulose reinforcement but still exhibited considerable isothermal stability. The raw materials and composites examined in this study were not affected by the manufacturing process temperatures utilized to produce the composites. The MCC decreased the composite crystallinity while the nano-sized cellulose (CNF and MFC) did not appear to have an effect on crystallinity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available