4.7 Article

Thermal stability of selenium, sulfur and nitrogen analogous phthalazine derivatives

Journal

JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY
Volume 111, Issue 1, Pages 605-610

Publisher

SPRINGER
DOI: 10.1007/s10973-012-2305-7

Keywords

Thermal analysis; Decomposition; Thermogravimetry; Stability; Organoselenium; Cytotoxicity

Ask authors/readers for more resources

Differential scanning calorimetry (DSC) and thermogravimetry (TG) are analytical and quantitative methods capable of providing reliable, fast and reproducible results. These data allow establishing the thermal stability, purity degree and the polymorphic behavior of organic compounds. Thermal analysis of fusion and degradation processes was carried out on organonitrogen, organosulfur and organoselenium phthalazine derivatives to establish thermal stability criteria. Decomposition and fusion temperatures of 27 biological active compounds, synthesized by our research group were determined using TG and DSC. Analysis of the thermal data indicated that: (a) in general, nitrogen compounds are more stable than sulfur and selenium compounds; (b) thioderivatives possess degradation temperatures higher than selenium compounds; (c) the presence of selenium atoms in molecular structure has associated a minor thermal stability; (d) sulfide derivatives decomposition process have higher T-onset values than disulfide compounds; (e) there are differences in the stability due to groups selenol, methylseleno, and cyanoseleno; (f) the nature of the substituent located on the benzyl ring has no effects on selenophthalazines thermal stability.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available