4.7 Article

Effects of common synergistic agents on intumescent flame retardant polypropylene with a novel charring agent

Journal

JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY
Volume 111, Issue 1, Pages 725-734

Publisher

SPRINGER
DOI: 10.1007/s10973-012-2211-z

Keywords

Synergistic agent; Intumescent flame retardant; Charring agent; Thermal behavior; Polypropylene (PP)

Funding

  1. National Natural Sciences Foundation of China, [50973066]

Ask authors/readers for more resources

In this article, the laboratory-made poly (p-ethylene terephthalamide) (PETA) was used as a novel charring agent and it combined with ammonium polyphosphate (APP) to prepare the intumescent flame retardant (IFR). For improving the flame-retardant efficiency of IFRs on polypropylene (PP), several general synergistic agents, such as common zinc oxide (Com-ZnO), nanometer structural zinc oxide (Nano-ZnO), zeolite 4A, and aluminum hypophosphite(Al(H2PO2)(3)), were added in composites of PP/IFR, and the synergistic effect was investigated by the limited oxygen index (LOI), the UL-94 (vertical flame) test, thermogravimetric analysis (TG), thermogravimetry-fourier transform infraredspectroscopy (TG-IR) test, and scanning electron microscopy (SEM). It indicated that the flame retardancy was significantly enhanced in terms of prompting the char formation of PETA and interaction between APP and synergistic agents. Overall, Al(H2PO2)(3) was the most effective synergistic agent among them. TG-IR analysis showed that the addition of Al(H2PO2)(3) could delay the release of NH3, and make the release of NH3 more smooth, which was useful to form a dense char. SEM presented that compact, continuous and good intumescent charring layers were observed in all PP/IFR systems with synergistic agent.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available