4.7 Article Proceedings Paper

The thermal conductivities enhancement of mono ethylene glycol and paraffin fluids by adding β-SiC nanoparticles

Journal

JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY
Volume 101, Issue 1, Pages 113-118

Publisher

SPRINGER
DOI: 10.1007/s10973-009-0498-1

Keywords

Nanofluid; Base fluid; Thermal conductivity; Concentration; Particles interaction; Size of nanoparticle; Brownian motion; Interfacial shell

Ask authors/readers for more resources

Changes in the thermal conductivities of paraffin and mono ethylene glycol (MEG) as a function of beta-SiC nanoparticle concentration and size was studied. An enhancement in the effective thermal conductivity was found for both fluids (i.e., both paraffin and MEG) upon the addition of nanoparticles. Although an enhancement in thermal conductivity was found, the degree of enhancement depended on the nanoparticle concentration in a complex way. An increase in particle-to-particle interactions is thought to be the cause of the enhancement. However, the enhancement became muted at higher particle concentrations compared to lower ones. This phenomenon can be related to nanoparticles interactions. An improvement in the thermal conductivities for both fluids was also found as the nanoparticle size shrank. It is believed that the larger Brownian motion for smaller particles causes more particle-to-particle interactions, which, in turn, improves the thermal conductivity. The role that the base-fluid plays in the enhancement is complex. Lower fluid viscosities are believed to contribute to greater enhancement, but a second effect, the interaction of the fluid with the nanoparticle surface, can be even more important. Nanoparticle-liquid suspensions generate a shell of organized liquid molecules on the particle surface. These organized molecules more efficiently transmit energy, via phonons, to the bulk of the fluid. The efficient energy transmission results in enhanced thermal conductivity. The experimentally measured thermal conductivities of the suspensions were compared to a variety of models. None of the models proved to adequately predict the thermal conductivities of the nanoparticle suspensions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available