4.4 Article

Requirements for comparing the performance of finite element models of biological structures

Journal

JOURNAL OF THEORETICAL BIOLOGY
Volume 256, Issue 1, Pages 96-103

Publisher

ACADEMIC PRESS LTD ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jtbi.2008.08.017

Keywords

FEA; Scaling; Optimization; Work; Strain energy; von Mises stress

Funding

  1. National Science Foundation (NSF) [IOB 0447616, DDIG 0709792]
  2. Direct For Biological Sciences
  3. Div Of Biological Infrastructure [0743460] Funding Source: National Science Foundation

Ask authors/readers for more resources

The widespread availability of three-dimensional imaging and computational power has fostered a rapid increase in the number of biologists using finite element analysis (FEA) to investigate the mechanical function of living and extinct organisms. The inevitable rise of studies that compare finite element models brings to the fore two critical questions about how such comparative analyses can and should be conducted: (1) what metrics are appropriate for assessing the performance of biological structures using finite element modeling? and, (2) how can performance be compared such that the effects of size and shape are disentangled? With respect to performance, we argue that energy efficiency is a reasonable optimality criterion for biological structures and we show that the total strain energy (a measure of work expended deforming a structure) is a robust metric for comparing the mechanical efficiency of structures modeled with finite elements. Results of finite element analyses can be interpreted with confidence when model input parameters (muscle forces, detailed material properties) and/or output parameters (reaction forces, strains) are well-documented by studies of living animals. However, many researchers wish to compare species for which these input and validation data are difficult or impossible to acquire. In these cases, researchers can still compare the performance of structures that differ in shape if variation in size is controlled. We offer a theoretical framework and empirical data demonstrating that scaling finite element models to equal force: surface area ratios removes the effects of model size and provides a comparison of stress-strength performance based solely on shape. Further. models scaled to have equal applied force:volume ratios provide the basis for strain energy comparison. Thus, although finite element analyses of biological structures should be validated experimentally whenever possible, this study demonstrates that the relative performance of unvalidated models can be compared so long as they are scaled properly. (C) 2008 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available