4.4 Article

Intrinsic and extrinsic causes of spatial variability across scales in a metacommunity

Journal

JOURNAL OF THEORETICAL BIOLOGY
Volume 250, Issue 1, Pages 113-124

Publisher

ACADEMIC PRESS LTD ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jtbi.2007.09.018

Keywords

spatial dynamics; metapopulations; scaling; intertidal communities; environmental heterogeneity; marine reserves; self-organization

Ask authors/readers for more resources

The relative importance of extrinsic and intrinsic causes of variability is among the oldest unresolved problems in ecology. However, the interaction between large-scale intrinsic variability in species abundance and environmental heterogeneity is still unknown. We use a metacommunity model with disturbance-recovery dynamics to resolve the interaction between scales of environmental heterogeneity, biotic processes and of intrinsic variability. We explain how population density increases with environmental variability only when its scale matches that of intrinsic patterns of abundance, through their ability to develop in heterogeneous environments. Succession dynamics reveals how the strength of local species interactions, through its control of intrinsic variability, can in turn control the scale of metapopulation response to environmental scales. Our results show that the environment and species density might fail to show any correlation despite their strong causal association. They more generally suggest that the spatial scale of ecological processes might not be sufficient to build a predictive framework for spatially heterogeneous habitats, including marine reserve networks. (C) 2007 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available