4.4 Article

Efficient control of transient wave forms to prevent spreading depolarizations

Journal

JOURNAL OF THEORETICAL BIOLOGY
Volume 251, Issue 2, Pages 202-209

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jtbi.2007.11.019

Keywords

nonlinear dynamical system; excitability; control

Ask authors/readers for more resources

In various neurological disorders spatio-temporal excitation patterns constitute examples of excitable behavior emerging from pathological pathways. During migraine, seizure, and stroke an initially localized pathological state can temporarily spread indicating a transition from non-excitable to excitable behavior. We investigate these transient wave forms in the generic FitzHugh-Nagumo (FHN) system of excitable media. Our goal is to define an efficient control minimizing the volume of invaded tissue. The general point of such a therapeutic optimization is how to apply control theory in the framework of structures in differential geometry by regarding parameter plane M of the FHN system as a differentiable manifold endowed with a metric. We suggest to equip M with a metric given by pharmacokinetic-pharmacodynamic models of drug receptor interaction. (C) 2007 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available