4.5 Article

Geometrical modelling of angle warp interlock fabrics

Journal

JOURNAL OF THE TEXTILE INSTITUTE
Volume 103, Issue 7, Pages 766-776

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/00405000.2011.606981

Keywords

geometrical modelling; three-dimensional fabric reinforcement; carbon tow fabric; multilayer fabric; warp interlock fabric

Ask authors/readers for more resources

A geometrical modelling approach has been developed which predicts all the necessary geometrical parameters for multilayer angle warp interlock weaves. The model requires tow and weaver data as input and gives fabric thickness, warp and weft crimp angle, areal weight and fibre volume fraction (FVF) as outputs. In order to validate the model we have woven three angle warp interlock woven reinforcements, having same number of total layers, on a conventional loom, using carbon multifilament tows in warp and glass multifilament tows in weft. The depth of the binder (maximum number of layers traversed by the binding warp in vertical plane) was maximum for the first variant (5). The binder tow traversed all the five layers so that this variant is termed as through-the-thickness angle interlock. For the second variant it was reduced to an intermediate level (3), whereas for the third one it was minimum (2) so as to conceive a layer-to-layer interlock structure. The geometry of such woven reinforcements can be categorised in terms of crimp amplitude and cross-sectional shape of the warp and weft tows. These two vary with the structure of the woven fabric and weaving parameters, ultimately influencing the areal weight, size of the unit cell and FVF of the fabric reinforcement. Results obtained show that the modelling approach can be successfully applied to calculate necessary fabric geometry parameters from minimum number of manufacturer and weaver data.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available