4.7 Article

Protein interactions with cyanidin-3-glucoside and its influence on α-amylase activity

Journal

JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE
Volume 89, Issue 1, Pages 33-40

Publisher

WILEY
DOI: 10.1002/jsfa.3407

Keywords

protein-phenol interactions; amylase activity; anthocyanins; cyanidin-3-glucoside; tryptophan quenching; circular dichroism

Ask authors/readers for more resources

BACKGROUND: Recent studies indicate that the bioavailability of anthocyanins is extremely low. One of the possible reasons could be their binding to proteins. Therefore, the binding affinity of cyanidin-3-glucoside (Cy3glc) to HSA and alpha-amylase was investigated by the quenching of protein tryptophan fluorescence. From data obtained, the binding constants and the free Gibbs energy were calculated. The changes in conformation of the proteins tested were studied with circular dichroism and the influence of binding on alpha-amylase activity determined. RESULTS: Cy3glc quenched the tryptophan fluorescence and upon ligand binding a change in protein structure was observed related to the corresponding decrease in the et-amylase activity. The association constants of 25 to 77 x 10(3) L mol(-1) were calculated for different proteins, indicating weak interactions of non-covalent nature. Competitive binding with HSA in the presence of 8-anilino-1-naphthalene sulfonic acid suggest involvement of hydrophobic interactions, in the case of HSA the possible site being subdomain IIA. CONCLUSION: The strongest affinity of Cy3glc for HSA being at pH 7 underlines its potential in transport and distribution of the phenolic compounds in organisms. An influence on salivary amylase activity is possible when drinking berry juices with high anthocyanins content. (C) 2008 Society of Chemical Industry

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available