4.6 Article

Function suggests nano-structure: electrophysiology supports that granule membranes play dice

Journal

JOURNAL OF THE ROYAL SOCIETY INTERFACE
Volume 9, Issue 75, Pages 2516-2526

Publisher

ROYAL SOC
DOI: 10.1098/rsif.2012.0161

Keywords

cellular communication; homotypic fusion; porosome; SNARE; unit granule

Funding

  1. Tel Aviv University

Ask authors/readers for more resources

Cellular communication depends on membrane fusion mechanisms. SNARE proteins play a fundamental role in all intracellular fusion reactions associated with the life cycle of secretory vesicles, such as vesicle-vesicle and vesicle plasma membrane fusion at the porosome base in the cell plasma membrane. We present growth and elimination (G&E), a birth and death model for the investigation of granule growth, its evoked and spontaneous secretion and their information content. Using a statistical mechanics approach in which SNARE components are viewed as interacting particles, the G&E model provides a simple 'nano-machine' of SNARE self-aggregation behind granule growth and secretion. Results from experimental work, mathematical calculations and statistical modelling suggest that for vesicle growth a minimal aggregation of three SNAREs is required, while for the evoked secretion one SNARE is enough. Furthermore, the required number of SNARE aggregates (which varies between cell types and is nearly proportional to the square root of the mean granule diameter) affects and is statistically identifiable from the size distributions of spontaneous and evoked secreted granules. The new statistical mechanics approach to granule fusion is bound to have a significant changing effect on the investigation of the pathophysiology of secretory mechanisms and methodologies for the investigation of secretion.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available