4.6 Article

Microbial diversity affects self-organization of the soil-microbe system with consequences for function

Journal

JOURNAL OF THE ROYAL SOCIETY INTERFACE
Volume 9, Issue 71, Pages 1302-1310

Publisher

ROYAL SOC
DOI: 10.1098/rsif.2011.0679

Keywords

soil structure; self-organization; microbial diversity; modelling; biophysics

Funding

  1. BBSRC
  2. Biotechnology and Biological Sciences Research Council [BBS/B/02002] Funding Source: researchfish
  3. Engineering and Physical Sciences Research Council [EP/C50920X/1] Funding Source: researchfish

Ask authors/readers for more resources

Soils are complex ecosystems and the pore-scale physical structure regulates key processes that support terrestrial life. These include maintaining an appropriate mixture of air and water in soil, nutrient cycling and carbon sequestration. There is evidence that this structure is not random, although the organizing mechanism is not known. Using X-ray microtomography and controlled microcosms, we provide evidence that organization of pore-scale structure arises spontaneously out of the interaction between microbial activity, particle aggregation and resource flows in soil. A simple computational model shows that these interactions give rise to self-organization involving both physical particles and microbes that gives soil unique material properties. The consequence of self-organization for the functioning of soil is determined using lattice Boltzmann simulation of fluid flow through the observed structures, and predicts that the resultant micro-structural changes can significantly increase hydraulic conductivity. Manipulation of the diversity of the microbial community reveals a link between the measured change in micro-porosity and the ratio of fungal to bacterial bio-mass. We suggest that this behaviour may play an important role in the way that soil responds to management and climatic change, but that this capacity for self-organization has limits.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available