4.6 Article

Risk factors for the evolutionary emergence of pathogens

Journal

JOURNAL OF THE ROYAL SOCIETY INTERFACE
Volume 7, Issue 51, Pages 1455-1474

Publisher

ROYAL SOC
DOI: 10.1098/rsif.2010.0123

Keywords

evolutionary epidemiology; emerging infectious diseases; multi-type branching process; mutation; contact network; mathematical model

Ask authors/readers for more resources

Recent outbreaks of novel infectious diseases (e.g. SARS, influenza H1N1) have highlighted the threat of cross-species pathogen transmission. When first introduced to a population, a pathogen is often poorly adapted to its new host and must evolve in order to escape extinction. Theoretical arguments and empirical studies have suggested various factors to explain why some pathogens emerge and others do not, including host contact structure, pathogen adaptive pathways and mutation rates. Using a multi-type branching process, we model the spread of an introduced pathogen evolving through several strains. Extending previous models, we use a network-based approach to separate host contact patterns from pathogen transmissibility. We also allow for arbitrary adaptive pathways. These generalizations lead to novel predictions regarding the impact of hypothesized risk factors. Pathogen fitness depends on the host population in which it circulates, and the 'riskiest' contact distribution and adaptive pathway depend on initial transmissibility. Emergence probability is sensitive to mutation probabilities and number of adaptive steps required, with the possibility of large adaptive steps (e.g. simultaneous point mutations or recombination) having a dramatic effect. In most situations, increasing overall mutation probability increases the risk of emergence; however, notable exceptions arise when deleterious mutations are available.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available