4.6 Article

Coupled relaxations at the protein-water interface in the picosecond time scale

Journal

JOURNAL OF THE ROYAL SOCIETY INTERFACE
Volume 6, Issue -, Pages S635-S640

Publisher

ROYAL SOC
DOI: 10.1098/rsif.2009.0182.focus

Keywords

neutron scattering; maltose-binding protein; anomalous diffusion; hydration water

Ask authors/readers for more resources

The spectral behaviour of a protein and its hydration water has been investigated through neutron scattering. The availability of both hydrogenated and perdeuterated samples of maltose-binding protein (MBP) allowed us to directly measure with great accuracy the signal from the protein and the hydration water alone. Both the spectra of the MBP and its hydration water show two distinct relaxations, a behaviour that is reminiscent of glassy systems. The two components have been described using a phenomenological model that includes two Cole-Davidson functions. In MBP and its hydration water, the two relaxations take place with similar average characteristic times of approximately 10 and 0.2 ps. The common time scales of these relaxations suggest that they may be a preferential route to couple the dynamics of the water hydrogen-bond network around the protein surface with that of protein fluctuations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available