4.4 Article

Dispersion engineered silicon nitride waveguides by geometrical and refractive-index optimization

Journal

Publisher

OPTICAL SOC AMER
DOI: 10.1364/JOSAB.31.002846

Keywords

-

Categories

Funding

  1. Federal Ministry of Education and Research (BMBF) [03Z2AN11, 03Z2AN12]

Ask authors/readers for more resources

Dispersion engineering in silicon nitride (SiXNY) waveguides is investigated through the optimization of the waveguide transversal dimensions and refractive indices in a multicladding arrangement. Ultraflat dispersion of -84.0 +/- 0.5 ps/nm/km between 1700 and 2440 nm and 1.5 +/- 3 ps/nm/km between 1670 and 2500 nm is numerically demonstrated. It is shown that typical refractive index fluctuations as well as dimension fluctuations during fabrication of the SiXNY waveguides are a limitation for obtaining ultraflat dispersion profiles. Single- and multicladding waveguides are fabricated and their dispersion profiles measured (over nearly 1000 nm) using a low-coherence frequency domain interferometric technique. By appropriate thickness optimization, the zero-dispersion wavelength is tuned over a large spectral range in single-and multicladding waveguides with small refractive index contrast (3%). A flat dispersion profile with +/- 3.2 ps/nm/km variation over 500 nm is obtained in a multicladding waveguide fabricated with a refractive index contrast of 37%. Finally, we generate a nearly three-octave supercontinuum in this dispersion flattened multicladding SiXNY waveguide. (C) 2014 Optical Society of America

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available