4.4 Article

Modal perspective on the transverse Anderson localization of light in disordered optical lattices

Journal

Publisher

OPTICAL SOC AMER
DOI: 10.1364/JOSAB.30.001452

Keywords

-

Categories

Funding

  1. National Science Foundation [1029547]
  2. Div Of Electrical, Commun & Cyber Sys
  3. Directorate For Engineering [1029547] Funding Source: National Science Foundation

Ask authors/readers for more resources

We present a detailed analysis of the transverse Anderson localization of light in a one-dimensional disordered optical lattice in the language of transversely localized and longitudinally propagating eigenmodes. The modal analysis allows us to explore localization behavior of a disordered lattice waveguide independent of the properties of the external excitation. Various localization-related phenomena, such as the periodic revival of a propagating Anderson-localized beam, are easily explained in modal language. We characterize the localization strength by the average width of the guided modes and carry out a detailed analysis of localization behavior as a function of the optical and geometrical parameters of the disordered lattice. We also show that in order to obtain a minimum average mode width, the average width of the individual random sites in the disordered lattice must be larger than the wavelength of the light by approximately a factor of two or more, and the optimum site width for the maximum localization depends on the design parameters of the disordered lattice. (C) 2013 Optical Society of America

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available