4.4 Article

Effects of classical nonlocality on the optical response of three-dimensional plasmonic nanodimers

Journal

Publisher

OPTICAL SOC AMER
DOI: 10.1364/JOSAB.30.002731

Keywords

-

Categories

Funding

  1. Air Force Office of Scientific Research (AFOSR) [FA9550-09-1-0562]
  2. Army Research Office through a Multidisciplinary University Research Initiative [W911NF-09-1-0539]

Ask authors/readers for more resources

We examine the optical scattering from a variety of axially symmetric plasmonic nanoparticle dimers separated by nanoscale gaps, quantifying the role of classical nonlocality on their optical properties. Due to the rotational symmetry of the analyzed structures, a high degree of accuracy is achieved using a computational approach termed 2.5D modeling, in which a small number of simulations on a two-dimensional domain can replace a memory-and time-intensive simulation on a three-dimensional domain. We find that scattered light from dimers consisting of nanoparticles with flat surfaces, such as nanodisks, exhibits pronounced spectral shifts due to the nonlocality of the electron fluid; these significant shifts persist even at relatively large (>1 nm) gap dimensions, where quantum tunneling effects are believed to be negligible. The 2.5D modeling technique accurately incorporates all responses due to any nonaxially symmetric eigenmodes of the system, such as dipolar and quadrupolar modes, thereby providing a complete characterization of the system for any excitation. (C) 2013 Optical Society of America

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available