4.4 Article

Analytical model for metal-insulator-metal mesh waveguide architectures

Journal

Publisher

OPTICAL SOC AMER
DOI: 10.1364/JOSAB.29.003157

Keywords

-

Categories

Ask authors/readers for more resources

Metal-insulator-metal (MIM) waveguide mesh structures utilize X-junctions as power distribution elements to create interference and feedback effects, thereby providing rich device functionality. We present a generalized analytical model for MIM mesh structures by incorporating a modified characteristic impedance model for MIM junctions into the scattering matrix formalism. The modified impedance model accounts for metal absorption and provides accurate prediction of plasmonic field distribution at X-junctions in terms of both magnitude and phase. Closed-form expressions for 2 x 1 and 2 x 2 MIM mesh architectures as well as MIM stub structures are then obtained and are dependent only on waveguide geometry and junction configuration. The model does not require numerically extracted parameters, and results agree, within a few percent, with those obtained from finite-difference time-domain method for both two-dimensional and three-dimensional waveguide geometries. The capability of the model for efficient design and optimization of junction-based MIM devices is demonstrated through the development of various filter and resonant devices. (C) 2012 Optical Society of America

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available