4.4 Article

Photonic nanojet calculations in layered radially inhomogeneous micrometer-sized spherical particles

Journal

Publisher

OPTICAL SOC AMER
DOI: 10.1364/JOSAB.28.001825

Keywords

-

Categories

Ask authors/readers for more resources

A photonic nanojet (PNJ) corresponds to the specific highly localized spatial region of electromagnetic near-field distribution in the vicinity of a transparent micrometer-sized particle illuminated by a light wave. Here we consider dielectric spherical composite particles consisting of a core and several concentric shells having different refractive indices. The longitudinal and latitudinal sizes of a PNJ and its peak intensity depending on the optical contrast variation of shells are numerically investigated. We show that by properly changing the refractive indices of neighboring shells, it is possible to manipulate the PNJ shape and, in particular, extend its longitudinal size or increase its peak intensity. (C) 2011 Optical Society of America

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available