4.4 Article

Analytical theory of optical bistability in plasmonic nanoresonators

Journal

Publisher

OPTICAL SOC AMER
DOI: 10.1364/JOSAB.28.002820

Keywords

-

Categories

Funding

  1. Australian Research Council (ARC) [DP110100713]
  2. Australian Commonwealth Government

Ask authors/readers for more resources

We present approximate analytical expressions describing the optical bistability phenomenon in a plasmonic-gap-waveguide-based nonlinear device. The device is formed by a metal-dielectric-metal (MDM) waveguide perpendicularly coupled to a stub structure that is filled with an optically nonlinear medium. Among the recently reported studies on nonlinearity-induced bistability in plasmonic nanostructures, our work stands out because of its pure analytic approach and the considered device geometry. The scattered-field technique that we employ here is hinged on the concepts of circuit theory and the characteristic-impedance model for single-mode MDM waveguides. By properly accounting for surface-plasmon damping, multiple reflections, and the Kerr effect, we obtain a fairly accurate parametric relation connecting the input and output intensities of the device. The impact of changing the operating wavelength and geometrical parameters of the stub on the bistable switching thresholds and the hysteresis loop width is demonstrated using a number of numerical examples. The derived relation is useful for rapid design optimization of plasmonic switches and memories. (C) 2011 Optical Society of America

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available