4.4 Article

Decoherence of highly mixed macroscopic quantum superpositions

Journal

Publisher

OPTICAL SOC AMER
DOI: 10.1364/JOSAB.25.001025

Keywords

-

Categories

Ask authors/readers for more resources

It is known that a macroscopic quantum superposition (MQS), when it is exposed to an environment, decoheres at a rate sealing with the separation of its component states in phase space. This is more or less consistent with the well-known proposition that a more macroscopic quantum state is reduced more quickly to a classical state in general. Effects of initial mixedness, however, on the subsequent decoherence of MQSs have been less known. We study the evolution of a highly mixed MQS interacting with an environment and compare it with that of a pure MQS having the same size as the central distance between its component states. Although the decoherence develops more rapidly for the mixed MQS in short times, its rate can be significantly suppressed after a certain time and becomes smaller than the decoherence rate of its corresponding pure MQS. In an optics experiment to generate a MQS, our result has the practical implication that nonclassicality of a MQS can still be observable in moderate times, even though a large amount of noise is added to the initial state. (C) 2008 Optical Society of America.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available