4.7 Article

Effects of fluidization velocity on solid stack volume in a bubbling fluidized-bed with nozzle-type distributor

Journal

POWDER TECHNOLOGY
Volume 275, Issue -, Pages 188-198

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.powtec.2015.02.017

Keywords

Bubbling fluidized-bed; Nozzle-type distributor; Fluidization velocity; Computational fluid dynamics (CFD); Eulerian two-fluid model; Solid stack volume (SSV)

Funding

  1. Bilateral International Collaborative R&D program under the Ministry of Knowledge Economy, Korea
  2. RCOE program of KITECH (Korea Institute of Industrial Technology)

Ask authors/readers for more resources

Hydrodynamic characteristics in a wind-box and bubbling fluidized-bed (BFB) gasifier zone of a dual fluidized-bed (DFB) were investigated by a two-phase three-dimensional computational fluid dynamics (CFD) model. The gas and solid phases were treated by an Eulerian-Eulerian two-fluid model, coupled with the realizable k-epsilon turbulence model and the kinetic theory of granular flow (KTGF) describing the random motion of solid particles. Pressure drops obtained from the cold-rig CFD simulation were validated with experimental data which were measured in a pilot-scale BFB using air as a fluidization agent and sand as heat carrier particles at an operating temperature of 800 degrees C Hydrodynamics of the fluidized-bed with a uniform gas distributor (Ideal case) and a nozzle-type gas distributor (Real case) were evaluated in terms of the pressure drop, solid volume fraction (SVF), uniformity index (UI), and solid stack volume (SSV) for three inlet air flow rates (low, medium and high). Similar behaviors were shown for both the two cases in pressure drop along the gasifier height. However, significant differences were observed in SVF, UI, and SSV. A threshold changing the slope of SSV to the air flow rate was found at a fluidization index (u/u(mf)) of 2.9. (C) 2015 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available