4.7 Article

Evaluating best practices for Campylobacter and Salmonella reduction in poultry processing plants

Journal

POULTRY SCIENCE
Volume 95, Issue 2, Pages 306-315

Publisher

OXFORD UNIV PRESS
DOI: 10.3382/ps/pev328

Keywords

Salmonella; Campylobacter; poultry processing; best practices

Funding

  1. United States Department of Agricultures' National Integrated Food Safety Initiative (USDA-NIFSI Grant) [2009-51110-05852]
  2. NIFA [2009-51110-05852, 581463] Funding Source: Federal RePORTER

Ask authors/readers for more resources

Poultry processing plants in the United States were surveyed on their current Campylobacter and Salmonella control practices. Following surveys, data were collected to develop a baseline for prevalence rates of Salmonella and Campylobacter; then changes in practices were implemented and evaluated for improvements in pathogen control. Surveys were sent to the plant Quality Assurance managers to determine production levels, antimicrobial interventions, and current pathogen testing practices. Initial sampling was performed at 6 plants with similar production volumes, at sites that included carcass samples before any pre-evisceration intervention, after exiting the inside-outside bird washer (IOBW), after exiting the pre-chiller, after exiting the primary chiller, and after exiting any post-chill intervention, as well as a water sample from each scalder, pre-chiller, primary chiller, and post-chill dip tank or finishing chiller. Enumerations and enrichments were performed for Campylobacter and Salmonella. Following the baseline sampling, changes in practices were suggested for each plant and a second sampling was conducted to determine their effectiveness. Results demonstrated that peracetic acid (PAA) was the most effective (P < 0.05) antimicrobial currently in use. The use of a post-chill antimicrobial immersion tank and/or use of a cetylpyridinium chloride (CPC) spray cabinet also displayed a further reduction in microbial levels (P < 0.05) when the primary chiller was not sufficient (P > 0.05). Microbial buildup in the immersion tanks demonstrates the need for effective cleaning, sanitation practices, and chiller maintenance to reduce contamination of poultry with Campylobacter and Salmonella.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available