4.4 Article

Agnostic Pathway/Gene Set Analysis of Genome-Wide Association Data Identifies Associations for Pancreatic Cancer

Journal

JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE
Volume 111, Issue 6, Pages 557-567

Publisher

OXFORD UNIV PRESS INC
DOI: 10.1093/jnci/djy155

Keywords

-

Categories

Funding

  1. Intramural Research Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health
  2. Science Foundation Ireland [15/SIRG/3482]
  3. Health Research Board/Irish Cancer Society [CPFPR-2012-2]
  4. federal funds from the National Cancer Institute (NCI), US National Institutes of Health [HHSN261200800001E]
  5. [RO1 CA154823]
  6. NATIONAL CANCER INSTITUTE [ZIACP010193] Funding Source: NIH RePORTER
  7. Health Research Board (HRB) [CPFPR-2012-2] Funding Source: Health Research Board (HRB)
  8. Science Foundation Ireland (SFI) [15/SIRG/3482] Funding Source: Science Foundation Ireland (SFI)
  9. MRC [MC_UU_12015/1] Funding Source: UKRI

Ask authors/readers for more resources

Background Genome-wide association studies (GWAS) identify associations of individual single-nucleotide polymorphisms (SNPs) with cancer risk but usually only explain a fraction of the inherited variability. Pathway analysis of genetic variants is a powerful tool to identify networks of susceptibility genes. Methods We conducted a large agnostic pathway-based meta-analysis of GWAS data using the summary-based adaptive rank truncated product method to identify gene sets and pathways associated with pancreatic ductal adenocarcinoma (PDAC) in 9040 cases and 12 496 controls. We performed expression quantitative trait loci (eQTL) analysis and functional annotation of the top SNPs in genes contributing to the top associated pathways and gene sets. All statistical tests were two-sided. Results We identified 14 pathways and gene sets associated with PDAC at a false discovery rate of less than 0.05. After Bonferroni correction (P <= 1.3 x 10(-5)), the strongest associations were detected in five pathways and gene sets, including maturity-onset diabetes of the young, regulation of beta-cell development, role of epidermal growth factor (EGF) receptor transactivation by G protein-coupled receptors in cardiac hypertrophy pathways, and the Nikolsky breast cancer chr17q11-q21 amplicon and Pujana ATM Pearson correlation coefficient (PCC) network gene sets. We identified and validated rs876493 and three correlating SNPs (PGAP3) and rs3124737 (CASP7) from the Pujana ATM PCC gene set as eQTLs in two normal derived pancreas tissue datasets. Conclusion Our agnostic pathway and gene set analysis integrated with functional annotation and eQTL analysis provides insight into genes and pathways that may be biologically relevant for risk of PDAC, including those not previously identified.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available