4.1 Article

Towards understanding cloud response in atmospheric GCMs: The use of tendency diagnostics

Journal

JOURNAL OF THE METEOROLOGICAL SOCIETY OF JAPAN
Volume 86, Issue 1, Pages 69-79

Publisher

METEOROLOGICAL SOC JAPAN
DOI: 10.2151/jmsj.86.69

Keywords

-

Ask authors/readers for more resources

In climate change projections, inter-model differences in cloud feedback have been identified as the largest source of uncertainty. The source terms of the cloud condensate tendency equation (CCTD) are expected to be useful diagnostics to better understand the different cloud responses to a CO2 increase in GCMs. To demonstrate the idea, analysis of the CCTD response to CO2 doubling is presented using two versions of a climate model with different climate sensitivities of 6.2 degrees C ('HS' version) and 4.1 degrees C ('LS' version). The model's response to CO2 doubling is characterized with a marked difference in the cloud feedback between the two versions, which is consistent with the cloud response in the southern middle latitudes: cloud decreases in the HS version and increases in the IS version. Analysis of the source terms reveals that the difference in cloud response is attributable to the ice sedimentation process. The results also suggest the importance of the vertical cloud ice profile which controls the ice sedimentation response to a CO2 increase, indicating the potential for providing constraints on the aspect of cloud feedback.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available