4.7 Article

Material aspects of dynamic neck retardation

Journal

JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS
Volume 56, Issue 1, Pages 93-113

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jmps.2007.04.003

Keywords

necking; ductility; inertia; strain hardening; strain-rate hardening

Ask authors/readers for more resources

Neck retardation in stretching of ductile materials is promoted by strain hardening, strain-rate hardening and inertia. Retardation is usually beneficial because necking is often the precursor to ductile failure. The interaction of material behavior and inertia in necking retardation is complicated, in part, because necking is highly nonlinear but also because the mathematical character of the response changes in a fundamental way from rate-independent necking to rate-dependent necking, whether due to material constitutive behavior or to inertia. For rate-dependent behavior, neck development requires the introduction of an imperfection, and the rate of neck growth in the early stages is closely tied to the imperfection amplitude. When inertia is important, multiple necks form. In contrast, for rate-independent materials deformed quasi-statically, single necks are preferred and they can emerge in an imperfection-free specimen as a bifurcation at a critical strain. In this paper, the interaction of material properties and inertia in determining neck retardation is unraveled using a variety of analysis methods for thin sheets and plates undergoing plane strain extension. Dimensionless parameters are identified, as are the regimes in which they play an important role. (c) 2007 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available