4.7 Article

Influence of single crystal orientation on homogeneous dislocation nucleation under uniaxial loading

Journal

JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS
Volume 56, Issue 5, Pages 1806-1830

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jmps.2007.11.012

Keywords

dislocations; single crystal; molecular dynamics; metallic material; tension-compression asymmetry

Ask authors/readers for more resources

Atomistic simulations are used to investigate how the stress required for homogeneous nucleation of partial dislocations in single crystal copper under uniaxial loading changes as a function of crystallographic orientation. Molecular dynamics is employed based on an embedded-atom method potential for Cu at 10 and 300K. Results indicate that non-Schmid parameters are important for describing the calculated dislocation nucleation behavior for single crystal orientations under tension and compression. A continuum relationship is presented that incorporates Schmid and non-Schmid terms to correlate the nucleation stress over all tensile axis orientations within the stereographic triangle. Simulations investigating the temperature dependence of homogeneous dislocation nucleation yield activation volumes of; approximate to 0.5-2b(3) and activation energies of approximate to 0.30eV. For uniaxial compression, full dislocation loop nucleation is observed, in contrast to uniaxial tension. One of the main differences between uniaxial tension and compression is how the applied stress is resolved normal to the slip plane on which dislocations nucleate-in tension, this normal stress is tensile, and in compression, it is compressive. Last, the tension-compression asymmetry is examined as a function of loading axis orientation. Orientations with a high resolved stress normal to the slip plane on which dislocations nucleate have a larger tension-compression asymmetry with respect to dislocation nucleation than those orientations with a low resolved normal stress. The significance of this research is that the resolved stress normal to the slip plane on which dislocations nucleate plays an important role in partial (and full) dislocation loop nucleation in FCC Cu single crystals. (C) 2007 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available