4.7 Article

Transient response of fluid pressure in a poroelastic material under uniaxial cyclic loading

Journal

JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS
Volume 56, Issue 5, Pages 1794-1805

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jmps.2007.11.008

Keywords

porous material; poroelasticity; transient response; fluid pressure; cyclic loading

Ask authors/readers for more resources

Poroelasticity is a theory that quantifies the time-dependent mechanical behavior of a fluid-saturated porous medium induced by the interaction between matrix deformation and interstitial fluid flow. Based on this theory, we present an analytical solution of interstitial fluid pressure in poroelastic materials under uniaxial cyclic loading. The solution contains transient and steady-state responses. Both responses depend on two dimensionless parameters: the dimensionless frequency Omega that stands for the ratio of the characteristic time of the fluid pressure relaxation to that of applied forces, and the dimensionless stress coefficient H governing the solid-fluid coupling behavior in poroelastic materials. When the phase shift between the applied cyclic loading and the corresponding fluid pressure evolution in steady-state is pronounced, the transient response is comparable in magnitude to the steady-state one and an increase in the rate of change of fluid pressure is observed immediately after loading. The transient response of fluid pressure may have a significant effect on the mechanical behavior of poroelastic materials in various fields. (C) 2007 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available