4.7 Article

Magnetoelastic buckling of a rectangular block in plane strain

Journal

JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS
Volume 56, Issue 4, Pages 1147-1169

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jmps.2007.10.008

Keywords

electromechanical processes; finite strain; particulate reinforced material; energy methods; stability

Ask authors/readers for more resources

Of interest here is the stability of a rectangular block subjected to a uniform magnetic field perpendicular to its longitudinal axis. The two ends of the block are frictionless and kept parallel to each other. This boundary value problem is motivated by the classical problem of magnetoelastic buckling in which a cantilever beam subjected to a transverse magnetic field buckles when the applied field reaches a critical value. This work presents a finite strain continuum mechanics formulation of the stability problem of a homogeneous, compressible, magnetoelastic rectangular block in plane strain subjected to a uniform transverse magnetic field. The applied variational approach employs an unconstrained energy minimization recently proposed by the authors. The analytical solution for the critical buckling fields for both the antisymmetric and symmetric modes are obtained for three different constitutive laws. The corresponding result for thin beams is extracted asymptotically for a special material and the solution is compared to previously published results. The critical magnetic field is shown to increase monotonically with the block's aspect ratio for each material and mode type. Antisymmetric modes are always the critical buckling modes for stress saturated and neo-Hookean materials, except for a narrow range of moderate aspect ratios (about 0.25) where symmetric modes become critical. For strain-saturated solids no buckling is possible above a maximum aspect ratio. (c) 2007 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available