4.6 Article

Micromechanical analysis of native and cross-linked collagen type I fibrils supports the existence of microfibrils

Journal

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jmbbm.2011.11.008

Keywords

Collagen; Microstructure; Mechanical properties; AFM (atomic force microscopy)

Funding

  1. ZonMw [01SL056]

Ask authors/readers for more resources

The mechanical properties of individual collagen fibrils of approximately 200 nm in diameter were determined using a slightly adapted AFM system. Single collagen fibrils immersed in PBS buffer were attached between an AFM cantilever and a glass surface to perform tensile tests at different strain rates and stress relaxation measurements. The stress-strain behavior of collagen fibrils immersed in PBS buffer comprises a toe region up to a stress of 5 MPa, followed by the heel and linear region at higher stresses. Hysteresis and strain-rate dependent stress-strain behavior of collagen fibrils were observed, which suggest that single collagen fibrils have viscoelastic properties. The stress relaxation process of individual collagen fibrils could be best fitted using a two-term Prony series. Furthermore, the influence of different cross-linking agents on the mechanical properties of single collagen fibrils was investigated. Based on these results, we propose that sliding of microfibrils with respect to each other plays a role in the viscoelastic behavior of collagen fibrils in addition to the sliding of collagen molecules with respect to each other. Our finding provides a better insight into the relationship between the structure and mechanical properties of collagen and the micro-mechanical behavior of tissues. (C) 2011 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available