4.6 Article

Measuring residual stress in ceramic zirconia-porcelain dental crowns by nanoindentation

Journal

Publisher

ELSEVIER
DOI: 10.1016/j.jmbbm.2011.11.006

Keywords

Residual stress; Porcelain; Zirconia; Dental crowns; Nanoindentation

Funding

  1. Oklahoma Center for the Advancement of Science and Technology (OCAST) [HR07-134]

Ask authors/readers for more resources

Residual stress plays a critical role in failure of ceramic dental crowns. The magnitude and distribution of residual stress in the crown system are largely unknown. Determining the residual stress quantitatively is challenging since the crown has such complex contours and shapes. This work explored the feasibility and validity of measuring residual stress of zirconia and porcelain in ceramic crowns by nanoindentation. Nanoindentation tests were performed on the cross-section of a crown for both porcelain and zirconia along four critical locations: the thickest, thinnest and medium porcelain thicknesses. Zirconia and porcelain pieces, chipped off from the crown and annealed at 400 degrees C, were used as reference samples. The residual stress was determined by comparing the measured hardness of the stressed sample with that of the reference sample. Nanoindentation impression images were acquired through a scanning probe microscope (SPM) equipped with a Hysitron Triboindenter. Zirconia showed large pile-up. Residual stress is determined along the thickness of crowns at the chosen locations for both porcelain and zirconia. The measured results were compared with the results from X-ray diffraction (XRD) and finite element modeling (FEM). Results show there are large amounts of residual stresses in the dental crown and their magnitude differs between locations due to the complex shape of the crown. The average residual stress readings were as high as -637 MPa and 323 MPa for zirconia and porcelain respectively. (C) 2011 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available