4.6 Article

Modulated optical sensitivity with nanostructured gallium nitride

Journal

APPLIED PHYSICS LETTERS
Volume 106, Issue 15, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.4918739

Keywords

-

Funding

  1. NSF [DMR-1207075]
  2. NCN [2011/01/B/ST8/07569]

Ask authors/readers for more resources

Surface functionalization via etching of high aspect ratio gallium nitride (GaN) nanostructures provides a way to modulate the optical properties in addition to properties gained from unique topographical formations. In this study, planar layered (heteroepitaxy) and bulk free-standing gallium nitride were modified via a phosphonic acid (1H, 1H, 2H, 2H-perfluorooctanephosphonic acid) assisted phosphoric acid etch in conjunction with an aqueous KOH + K2S2O8 formed gallium nitride nanostructured surface. Despite the high defect concentrations in the thin planar and nanostructured GaN layer, the nanostructured GaN sample produced improved photoluminescence intensities versus the high quality bulk free-standing gallium nitride. Subsequent treatments with additive and additive-free phosphoric etches provided a means of additional optical manipulation in the form of red-shifting the near-band-edge (NBE) emission of the nanostructured GaN sample and increasing the maximum NBE photoluminescence intensity. (c) 2015 AIP Publishing LLC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available