4.7 Article

Enzymatic degradation of graphene/polycaprolactone materials for tissue engineering

Journal

POLYMER DEGRADATION AND STABILITY
Volume 111, Issue -, Pages 71-77

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.polymdegradstab.2014.10.010

Keywords

Polycaprolactone; Graphene; Enzymatic degradation; Lipase; Composite; Tissue engineering

Funding

  1. Australian Research Council through the Superscience Fellowships
  2. Australian Laureate Fellowship

Ask authors/readers for more resources

Graphene/polycaprolactone composites have proven to be promising substrates for biodegradable tissue engineering scaffolds for electro-responsive tissue types. The degradation behaviour of these materials will be critical to any future application. To that end, the effect of chemically converted reduced graphene oxide (CCG) on the enzymatic degradation of graphene/polycaprolactone composites in phosphate buffered saline was examined. Two types of graphene/polycaprolactone composites were tested; a simple blend and our previously developed covalently-linked composites. A number of graphene concentrations of each type were tested. Covalently linked graphene/polycaprolactone (cPCl-CCG) showed a consistent degradation profile maintaining the graphene:PCL ratio throughout the degradation process. However, the mixed blended sample (mixPCl-CCG) showed inconsistent graphene loss indicative of non-homogeneous dispersion throughout the polymer matrix. Increasing the graphene concentration up to 1 wt% did not change the rate of degradation but at higher concentrations degradation was slowed. The degradation products were also shown to be non-toxic to the proliferating cells. (C) 2014 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available