4.4 Article

Neogene rock uplift and erosion in northern Borneo: evidence from the Kinabalu granite, Mount Kinabalu

Journal

JOURNAL OF THE GEOLOGICAL SOCIETY
Volume 170, Issue 5, Pages 805-816

Publisher

GEOLOGICAL SOC PUBL HOUSE
DOI: 10.1144/jgs2011-130

Keywords

-

Funding

  1. SE Asia Research Group at Royal Holloway
  2. Australian Research Council (ARC) [DP0877274]
  3. Research School of Earth Sciences, Australian National University
  4. Australian Research Council [DP0877274] Funding Source: Australian Research Council

Ask authors/readers for more resources

Thermochronological data from the Kinabalu granite, emplaced between c. 7.2 and 7.8 Ma, provide a unique record of northern Borneo's exhumation during the Neogene. Biotite 40Ar/39Ar ages (c. 7.32-7.63 Ma) record rapid cooling of the granite in the Late Miocene as it equilibrated with ambient crustal temperatures. Zircon fission-track ages (c. 6.6-5.8 Ma) and apatite (U-Th-Sm)/He ages (central age c. 5.5 Ma) indicate rapid cooling during the Late Miocene-Early Pliocene. This cooling reflects exhumation of the granite, uplift and erosion bringing it closer to the Earth's surface. Thermochronological age versus elevation relationships suggest exhumation rates of more than 7 mm a(-1) during the latest Miocene and Early Pliocene. Neither the emplacement of the Kinabalu granite nor its exhumation is related to the Sabah orogeny, which terminated in the Early Miocene. Instead, granite magmatism was caused by extension related to subduction rollback of the Sulu Arc, and Mio-Pliocene exhumation of the Kinabalu granite was driven either by lithospheric delamination or break-off of a subducted slab beneath Sabah. Plio-Pleistocene tectonism offshore and onshore northern Borneo reflects continuing large-scale gravity-driven tectonics in the region.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available