4.6 Article

An Integrated 1-Dimensional Model of a Photoelectrochemical Cell for Water Splitting

Journal

JOURNAL OF THE ELECTROCHEMICAL SOCIETY
Volume 161, Issue 8, Pages E3328-E3340

Publisher

ELECTROCHEMICAL SOC INC
DOI: 10.1149/2.035408jes

Keywords

-

Funding

  1. Office of Science of the U.S. Department of Energy [DE-SC0004993]

Ask authors/readers for more resources

A one-dimensional model of a photoelectrochemical cell for solar water splitting has been developed, with applicability to both wired and wireless designs. The model of the light absorber handles electron and hole transport. The model of the electrolyte accounts for mass transport through regions of aqueous solution, including stagnant diffusion layers and bulk regions to address mixing due to bubbles, natural convection, or other sources. A polymer membrane may be present in the electrolyte. The models of the light absorber and the electrolyte are integrated through the reactions taking place at the interface between them. Charge transfer from the semiconductor to the solution is handled using a kinetic model involving reactions between the,species in both the light absorber and the electrolyte. A simplified model is also presented for use when concentration gradients in the electrolyte are negligible. The simplified model captures the effect of the electrolyte in the boundary conditions for the light absorber. The model is validated against current-potential data for a hydrogen-evolving light absorber with varying degrees of simulated solar illumination. The model then shows how overall solar-to-hydrogen yield depends on the efficiency of the light absorber and the areal fraction of absorbers in a membrane separator. (C) 2014 The Electrochemical Society.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available