4.6 Article

Strategies to Avert Electrochemical Shock and Their Demonstration in Spinels

Journal

JOURNAL OF THE ELECTROCHEMICAL SOCIETY
Volume 161, Issue 11, Pages F3005-F3009

Publisher

ELECTROCHEMICAL SOC INC
DOI: 10.1149/2.0021411jes

Keywords

-

Funding

  1. U.S. Department of Energy, Basic Energy Sciences, Division of Materials Science and Engineering [DE-SC0002633]
  2. National Science Foundation Graduate Research Fellowship
  3. National Science Foundation [DMR-08-19762]

Ask authors/readers for more resources

We demonstrate that extensive electrochemical shock-electrochemical cycling induced fracture-occurs due to coherency stresses arising from first order cubic-to-cubic phase transformations in the spinels LiMn2O4 and LiMn1.5Ni0.5O4. Electrochemical shock occurs despite the isotropy of the shape changes in these materials. This electrochemical shock mechanism is strongly sensitive to particle size; for LiMn2O4 and LiMn1.5Ni0.5O4, fracture can be averted with particle sizes smaller than similar to 1 mu m. As a further critical test of the proposed mechanism, iron-doping was used to induce continuous solid solubility of lithiuni in LiMn1.5Ni0.5O4, and shown to virtually avert electrochemical shock, while having minimal impact on the electrode potential and capacity. (C) The Author(s) 2014. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives 4.0 License (CC BY-NC-ND, http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reuse, distribution, and reproduction in any medium, provided the original work is not changed in any way and is properly cited. For permission for commercial reuse, please email: oa@electrochem.org. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available