4.6 Article

Particle Size Polydispersity in Li-Ion Batteries

Journal

JOURNAL OF THE ELECTROCHEMICAL SOCIETY
Volume 161, Issue 3, Pages A422-A430

Publisher

ELECTROCHEMICAL SOC INC
DOI: 10.1149/2.097403jes

Keywords

-

Funding

  1. National Science Foundation [CMMI 0856491]
  2. Royal Academy of Engineering
  3. EPSRC

Ask authors/readers for more resources

Starting from three-dimensional X-ray tomography data of a commercial LiMn2O4 battery electrode, the effect of microstructure on the electrochemical and chemo-mechanical response of lithium-ion batteries is analyzed. Simulations show that particle size polydispersity impact the local chemical and electrical behavior of a porous electrode, while particle-particle mechanical interactions favor intercalation induced stress accumulation, resulting in a mechanically unreliable electrode microstructure. Simulations based on computer-generated electrode microstructures demonstrate that broad particle size distributions deliver up to two times higher energy density than monodisperse-sized particles based electrodes for low C-rates. However, monodisperse particle size distribution electrodes deliver the highest energy and power density for high discharge rates due to a higher surface area of reactive material per unit volume. Calculations show that the surface roughness in experimentally determined electrodes is 2.5 times higher than the one delivered by perfectly smooth spherical particles in computer generated electrodes, and provide high instantaneous power performance, but accelerate side reactions that impact negatively on power performance. The combined experimental and modeling approach demonstrates that porous electrodes with spatially uniform microstructural features improve electrochemical performance and mechanical reliability, especially for high power density applications. (C) 2014 The Electrochemical Society. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available