4.6 Article

Nickel Hydroxide Nanoflowers for a Nonenzymatic Electrochemical Glucose Sensor

Journal

JOURNAL OF THE ELECTROCHEMICAL SOCIETY
Volume 161, Issue 10, Pages B216-B219

Publisher

ELECTROCHEMICAL SOC INC
DOI: 10.1149/2.0521410jes

Keywords

-

Funding

  1. Shenzhen Science and Technology Research grant [JCYJ20120613172439451]
  2. Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control of Nanjing University of Information Science and Technology
  3. Jiangsu Province Innovation Platform for Superiority Subject of Environmental Science and Engineering [KHK1212]
  4. Shenzhen Innovation and Technology Commission [ZDSY20120612094418467]

Ask authors/readers for more resources

Nickel hydroxide nanoflowers (f-Ni(OH)(2)) were synthesized in present work. The crystal structure of as-prepared sample is beta-Ni(OH)(2) phase (JCPDS # 14-0117). A nano composite film was fabricated by dispersing nano scale f-Ni(OH)(2) and carbon nanotubes (CNTs) into Nafion solution. The electrocatalytic oxidation of glucose in alkaline medium on the f-Ni(OH)(2)-CNT-Nafion composite (fNCN) modified glass carbon electrode (GCE) had been investigated. The prepared f-Ni(OH)(2)-CNT-Nafion / Glass Carbon electrode (fNCN/GCE) glucose sensor could produce large electrocatalytic oxidation current in glucose solution when the applied potential exceeds 0.32 V vs. SCE, which is much lower than the similar sensor based on Ni(OH)(2) nanosheets (s-Ni(OH)(2)) and is comparable to alpha-Ni(OH)(2) sensor. Amperometric measurements were done with different concentrations of glucose. The fNCN/GCE glucose sensor has high sensitivity and low detection limit at a potential of 0.45 V (vs. SCE). It showed a detection limit of 0.5 mu M (S/N = 3) and a sensitivity of 16.85 mu A mM(-1) (238.5 mu A mM(-1) cm(-2)) with a linear range from 0.1 to 1.1 mM. The K-m derived from Lineweaver-Burk equation is evaluated to be 4.25 mM, which is much lower than enzymatic glucose biosensor. (C) 2014 The Electrochemical Society. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available