4.6 Article

Electrical Constriction Resistance in Current Collectors of Large-Scale Lithium-Ion Batteries

Journal

JOURNAL OF THE ELECTROCHEMICAL SOCIETY
Volume 160, Issue 10, Pages A1731-A1740

Publisher

ELECTROCHEMICAL SOC INC
DOI: 10.1149/2.041310jes

Keywords

-

Funding

  1. Automotive Partnership Canada (APC) [APCPJ 401826-10]

Ask authors/readers for more resources

A new two-dimensional model is proposed to describe the electrical conduction in current collectors of prismatic lithium-ion batteries, and to investigate the effects of tab design on voltage drop. Polarization expression for a large-scale lithium-ion cell is determined experimentally and implemented in a numerical analysis to show that reaction current remains approximately uniform when depth-of-discharge is less than 85%. Based on this observation, a compact analytical model is developed to determine bulk and constriction/spreading resistances in current collectors. Moreover, the model predictions are successfully validated through comparisons with experimental data. It is demonstrated that constriction/spreading resistance in current collectors of the considered battery is fairly small; about 10% of the total cell resistance but it is larger than the contribution of bulk resistance which is about 3%. The model confirms that constriction/spreading increase with: decrease in the aspect ratio of the current collector, decrease in the tab width, and increase in the tab eccentricity. (C) 2013 The Electrochemical Society. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available