4.6 Article

Electrochemical Reduction of Carbon Dioxide II. Design, Assembly, and Performance of Low Temperature Full Electrochemical Cells

Journal

JOURNAL OF THE ELECTROCHEMICAL SOCIETY
Volume 160, Issue 9, Pages F953-F957

Publisher

ELECTROCHEMICAL SOC INC
DOI: 10.1149/2.030309jes

Keywords

-

Funding

  1. Solid State and Materials Chemistry Program of the Division of Materials Research at the National Science Foundation
  2. South Carolina Honors College Science Undergraduate Research Funding Program

Ask authors/readers for more resources

In this paper, we report the performance of a full electrochemical cell which directly converts carbon dioxide to fuels at room temperature and ambient pressure. The design of this cell features a buffer layer of liquid-phase electrolyte circulating between the ion exchange membrane and the cathode Sn catalyst layer. In the absence of the buffer layer, hydrogen was the predominant product with a faradaic efficiency nearly similar to 100%. Incorporating a buffer layer with an electrolyte, e.g. 0.1 M KHCO3, substantially promoted the formation of formate and CO, while suppressing hydrogen production. When the anode was fed with hydrogen, the onset of formate production occurred at 0.8 V, with a faradaic efficiency of 65% and a partial current density of -1 mA cm(-2); at which the energy efficiency toward formate production was 50%. The highest faradaic efficiency observed toward formate formation was over 90% at -1.7 V corresponding to a partial current density of -9 mA cm(-2). When the anode was fed with aqueous reactant (e.g. 1 M KOH solution), the formate production began at -1.2 V with a partial current density of -1 mA cm(-2), corresponding to a faradaic efficiency of 70% and an energy efficiency of 60%. In this case, the highest faradaic efficiency toward formate formation was 85% at -2.0 V with a partial current density of -6 mA cm(-2). Our studies show that this full electrochemical cell with a circulating liquid-phase electrolyte buffer layer enables production of formate at an overpotential of similar to-0.2 V regardless of the gaseous or aqueous reactants at the anode side. (C) 2013 The Electrochemical Society. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available