4.6 Article

Degradation and Structural Evolution of xLi(2)MnO(3) center dot (1-x)LiMn1/3Ni1/3Co1/3O2 during Cycling

Journal

JOURNAL OF THE ELECTROCHEMICAL SOCIETY
Volume 161, Issue 1, Pages A160-A167

Publisher

ELECTROCHEMICAL SOC INC
DOI: 10.1149/2.079401jes

Keywords

-

Funding

  1. State Key Basic Research Program of PRC [2011CB935903]
  2. National Natural Science Foundation of China [20925312]
  3. Shanghai Science & Technology Committee [10JC1401500, 08DZ2270500]

Ask authors/readers for more resources

In the present work, the electrochemical degradation and structural evolution of xLi(2)MnO(3) center dot (1-x)LiMn1/3Ni1/3Co1/3O2 (x = 0.3, 0.5, and 0.7) materials and the role of Li2MnO3 component during electrochemical cycling are systematically studied through careful analysis of electrochemical data, ex-situ XRD, and HR-TEM observations. The materials consisting of higher Li2MnO3 content show better cyclic performance with more significant voltage decay compared to that of xLi(2)MnO(3) center dot (1-x)LiMn1/3Ni1/3Co1/3O2 electrodes with low Li2MnO3 content. The electrochemical degradation of xLi(2)MnO(3) center dot (1-x)LiMn1/3Ni1/3Co1/3O2 electrodes upon cycling not only results from the remarkably increase in impedance caused by the damage of the electrode surface, in particular for low Li2MnO3 content; but also arises from structural rearrangement, especially for high Li2MnO3 content. Upon cycling, high Li2MnO3 content in the crystal structure of lithium-rich transition metal oxides can stabilize the electrode\electrolyte interface at high potentials, facilitates the rapid formation of cracks and porosity in the cycled electrodes, and promotes the distortions and breakdown of the original well-layered lattice. (C) 2013 The Electrochemical Society. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available