4.6 Article

Effects of Nanoparticle Geometry and Size Distribution on Diffusion Impedance of Battery Electrodes

Journal

JOURNAL OF THE ELECTROCHEMICAL SOCIETY
Volume 160, Issue 1, Pages A15-A24

Publisher

ELECTROCHEMICAL SOC INC
DOI: 10.1149/2.023301jes

Keywords

-

Funding

  1. Samsung-MIT Alliance
  2. Kwanjeong Educational Foundation

Ask authors/readers for more resources

The short diffusion lengths in insertion battery nanoparticles render the capacitive behavior of bounded diffusion, which is rarely observable with conventional larger particles, now accessible to impedance measurements. Coupled with improved geometrical characterization, this presents an opportunity to measure solid diffusion more accurately than the traditional approach of fitting Warburg circuit elements, by properly taking into account the particle geometry and size distribution. We revisit bounded diffusion impedance models and incorporate them into an overall impedance model for different electrode configurations. The theoretical models are then applied to experimental data of a silicon nanowire electrode to show the effects of including the actual nanowire geometry and radius distribution in interpreting the impedance data. From these results, we show that it is essential to account for the particle shape and size distribution to correctly interpret impedance data for battery electrodes. Conversely, it is also possible to solve the inverse problem and use the theoretical impedance image to infer the nanoparticle shape and/or size distribution, in some cases, more accurately than by direct image analysis. This capability could be useful, for example, in detecting battery degradation in situ by simple electrical measurements, without the need for any imaging. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.023301jes] All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available