4.6 Article

Mechanism of Anodic Dissolution of the Aluminum Current Collector in 1 M LiTFSI EC:DEC 3:7 in Rechargeable Lithium Batteries

Journal

JOURNAL OF THE ELECTROCHEMICAL SOCIETY
Volume 160, Issue 2, Pages A356-A360

Publisher

ELECTROCHEMICAL SOC INC
DOI: 10.1149/2.081302jes

Keywords

-

Ask authors/readers for more resources

So-called corrosion of the aluminum current collector in the electrolyte 1 M LiTFSI in ethylene carbonate : diethyl carbonate, EC:DEC (3:7, by wt) has been investigated by electrochemical and analytical methods. In fact, Al corrosion in this electrolyte is actually an anodic Al dissolution reaction. In addition to Al dissolution various electrolyte degradation processes were identified. A combination of a specially developed on-line ICP-OES method and in situ EQCM measurements revealed that before the dissolution of aluminum starts, an activation process takes place for ca. 6 hours, which is accompanied by strong electrolyte oxidation. The electrolyte decomposition reactions were investigated by ex situ IC measurements which showed that the LiTFSI decomposed and that F- s the main decomposition product. ex situ GC-MS measurements revealed that also the solvent decomposes and CO2 as well as ethoxyethanol are formed as degradation products. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.081302jes] All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available