4.6 Article

Inorganic Glue Enabling High Performance of Silicon Particles as Lithium Ion Battery Anode

Journal

JOURNAL OF THE ELECTROCHEMICAL SOCIETY
Volume 158, Issue 5, Pages A592-A596

Publisher

ELECTROCHEMICAL SOC INC
DOI: 10.1149/1.3560030

Keywords

-

Funding

  1. King Abdullah University of Science and Technology (KAUST) [KUS-I1-001-12]
  2. Office of Naval Research

Ask authors/readers for more resources

Silicon, as an alloy-type anode material, has recently attracted lots of attention because of its highest known Li(+) storage capacity (4200 mAh/g). But lithium insertion into and extraction from silicon are accompanied by a huge volume change, up to 300%, which induces a strong strain on silicon and causes pulverization and rapid capacity fading due to the loss of the electrical contact between part of silicon and current collector. Silicon nanostructures such as nanowires and nanotubes can overcome the pulverization problem, however these nano-engineered silicon anodes usually involve very expensive processes and have difficulty being applied in commercial lithium ion batteries. In this study, we report a novel method using amorphous silicon as inorganic glue replacing conventional polymer binder. This inorganic glue method can solve the loss of contact issue in conventional silicon particle anode and enables successful cycling of various sizes of silicon particles, both nano-particles and micron particles. With a limited capacity of 800 mAh/g, relatively large silicon micron-particles can be stably cycled over 200 cycles. The very cheap production of these silicon particle anodes makes our method promising and competitive in lithium ion battery industry. (C) 2011 The Electrochemical Society. [DOI: 10.1149/1.3560030] All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available