4.6 Article

Accelerator Surface Phase Associated with Superconformal Cu Electrodeposition

Journal

JOURNAL OF THE ELECTROCHEMICAL SOCIETY
Volume 157, Issue 4, Pages D228-D241

Publisher

ELECTROCHEMICAL SOC INC
DOI: 10.1149/1.3298852

Keywords

conformal field theory; copper; desorption; diffusion; electrolytes; electroplating; metallisation; scanning tunnelling microscopy; supersymmetric field theory; surfactants

Ask authors/readers for more resources

Superconformal film growth is a key process in state-of-the-art Cu metallization of electronic devices. Superfilling of recessed surface features results from the competition between electrolyte additives that accelerate or inhibit Cu electroplating. In situ scanning tunneling microscopy is used to image the accelerating bis-(3-sodiumsulfopropyl disulfide) (SPS)-Cl- surfactant phase that is responsible for disrupting and preventing the formation of the inhibiting poly(ethylene glycol)-Cl- layer. Various aspects of competitive and coadsorption of Cl- and SPS on Cu(100) were examined for industrially relevant additive concentrations. At potentials associated with superfilling, a saturated, c(2x2) Cl- ordered adlayer forms on the surface. When as-received SPS is added, individual SPS and (3-mercaptopropyl)sulfonate (MPS) molecules are imaged as a mobile two-dimensional gas diffusing on the Cl- adlattice. The SPS-Cl- surfactant accounts for many aspects of the additive function previously observed and stipulated by the curvature enhanced accelerator model of superconformal film growth. SPS-derived species of differing mobility and tunneling contrast appear with exposure time. The lattice gas species are sensitive to the imaging conditions with tip-molecule interactions particularly evident at higher tunneling currents. At negative potentials, the c(2x2) Cl- adlayer is disrupted by an order-disorder transition, followed by desorption at more negative potentials. This allows direct access of SPS to the Cu metal whereupon irreversible sulfide formation occurs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available